skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Hengyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum error correction is necessary to perform large-scale quantum computation but requires extremely large overheads in both space and time. High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs. In this work, we design fast and parallelizable logical gates for qLDPC codes and demonstrate their utility for key algorithmic subroutines such as the quantum adder. Our gate gadgets utilize transversal logical s between a data qLDPC code and a suitably constructed ancilla code to perform parallel Pauli product measurements (PPMs) on the data logical qubits. For hypergraph product codes, we show that the ancilla can be constructed by simply modifying the base classical codes of the data code, achieving parallel PPMs on a subgrid of the logical qubits with a lower space-time cost than existing schemes for an important class of circuits. Generalizations to 3D and 4D homological product codes further feature fast PPMs in constant depth. While prior work on qLDPC codes has focused on individual logical gates, we initiate the study of fault-tolerant compilation with our expanded set of native qLDPC code operations, constructing algorithmic primitives for preparing k -qubit Greenberger-Horne-Zeilinger states and distilling or teleporting k magic states with O ( 1 ) space overhead in O ( 1 ) and O ( k log k ) logical cycles, respectively. We further generalize this to key algorithmic subroutines, demonstrating the efficient implementation of quantum adders using parallel operations. Our constructions are naturally compatible with reconfigurable architectures such as neutral atom arrays, paving the way to large-scale quantum computation with low space and time overheads. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Quantum error correction (QEC) is believed to be essential for the realization of large-scale quantum computers. However, due to the complexity of operating on the encoded `logical' qubits, understanding the physical principles for building fault-tolerant quantum devices and combining them into efficient architectures is an outstanding scientific challenge. Here we utilize reconfigurable arrays of up to 448 neutral atoms to implement all key elements of a universal, fault-tolerant quantum processing architecture and experimentally explore their underlying working mechanisms. We first employ surface codes to study how repeated QEC suppresses errors, demonstrating 2.14(13)x below-threshold performance in a four-round characterization circuit by leveraging atom loss detection and machine learning decoding. We then investigate logical entanglement using transversal gates and lattice surgery, and extend it to universal logic through transversal teleportation with 3D [[15,1,3]] codes, enabling arbitrary-angle synthesis with logarithmic overhead. Finally, we develop mid-circuit qubit re-use, increasing experimental cycle rates by two orders of magnitude and enabling deep-circuit protocols with dozens of logical qubits and hundreds of logical teleportations with [[7,1,3]] and high-rate [[16,6,4]] codes while maintaining constant internal entropy. Our experiments reveal key principles for efficient architecture design, involving the interplay between quantum logic and entropy removal, judiciously using physical entanglement in logic gates and magic state generation, and leveraging teleportations for universality and physical qubit reset. These results establish foundations for scalable, universal error-corrected processing and its practical implementation with neutral atom systems. 
    more » « less
    Free, publicly-accessible full text available June 25, 2026
  3. Free, publicly-accessible full text available February 6, 2026